Remarks on the weak–strong uniqueness for the 2D quasi-geostrophic equation in BMO space

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks on the global regularity for the super-critical 2D dissipative quasi-geostrophic equation

In this article we apply the method used in the recent elegant proof by Kiselev, Nazarov and Volberg of the well-posedness of critically dissipative 2D quasi-geostrophic equation to the super-critical case. We prove that if the initial value satisfies ‖∇θ0‖1−2s L∞ ‖θ0‖ L∞ < cs for some small number cs > 0, where s is the power of the fractional Laplacian, then no finite time singularity will oc...

متن کامل

Weak-strong uniqueness criterions for the critical quasi-geostrophic equation

We give two weak-strong uniqueness results for the weak solutions to the critical dissipative quasi-geostrophic equation when the initial data belongs to Ḣ−1/2. The first one shows that we can construct a unique Ḣ−1/2-solution when the initial data belongs moreover to L∞ with a small L∞ norm. The other one gives the uniqueness of a Ḣ−1/2-solution which belongs to C([0, T ), CMO).

متن کامل

Global Well-posedness for the 2d Quasi-geostrophic Equation in a Critical Besov Space

We show that the 2D quasi-geostrophic equation has global and unique strong solution when the (large) data belongs in the critical scale invariant space Ḃ2−2α 2,∞ ∩ L2/(2α−1).

متن کامل

Solutions of the 2D quasi-geostrophic equation in Hölder spaces

The 2D quasi-geostrophic equation t + u · ∇ + (− ) = 0, u=R⊥( ) is a two-dimensional model of the 3D hydrodynamics equations. When 1 2 , the issue of existence and uniqueness concerning this equation becomes difficult. It is shown here that this equation with either = 0 or > 0 and 0 1 2 has a unique local in time solution corresponding to any initial datum in the space Cr ∩ Lq for r > 1 and q >...

متن کامل

On the critical dissipative quasi-geostrophic equation

The 2D quasi-geostrophic (QG) equation is a two dimensional model of the 3D incompressible Euler equations. When dissipation is included in the model then solutions always exist if the dissipation’s wave number dependence is super-linear. Below this critical power the dissipation appears to be insufficient. For instance, it is not known if the critical dissipative QG equation has global smooth ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2012

ISSN: 0893-9659

DOI: 10.1016/j.aml.2011.12.026